Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO₂) — NCA
- Get link
- X
- Other Apps
About:
Lithium-ion is named for its active materials; the words are either written in full or shortened by their chemical symbols. A series of letters and numbers strung together can be hard to remember and even harder to pronounce, and battery chemistries are also identified in abbreviated letters.
For example, lithium cobalt oxide, one of the most common Li-ions, has the chemical symbols LiCoO₂ and the abbreviation LCO. For reasons of simplicity, the short form Li-cobalt can also be used for this battery. Cobalt is the main active material that gives this battery character. Other Li-ion chemistries are given similar short-form names.
Lithium nickel cobalt aluminum oxide battery, or NCA, has been around since 1999 for special applications. It shares similarities with NMC by offering high specific energy, reasonably good specific power and a long life span. Less flattering are safety and cost. NCA is a further development of lithium nickel oxide; adding aluminum gives the chemistry greater stability.
Voltages | 3.60V nominal; typical operating range 3.0–4.2V/cell |
Specific energy (capacity) | 200-260Wh/kg; 300Wh/kg predictable |
Charge (C-rate) | 0.7C, charges to 4.20V (most cells), 3h charge typical, fast charge possible with some cells |
Discharge (C-rate) | 1C typical; 3.00V cut-off; high discharge rate shortens battery life |
Cycle life | 500 (related to depth of discharge, temperature) |
Thermal runaway | 150°C (302°F) typical, High charge promotes thermal runaway |
Cost | ~$350 per kWh (Source: RWTH, Aachen) |
Applications | Medical devices, industrial, electric powertrain (Tesla) |
Comments | Shares similarities with Li-cobalt. Serves as Energy Cell. |
- Get link
- X
- Other Apps
Comments
Post a Comment